Two strong limit theorems for processes with independent increments

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central limit theorems for the L 2 norm of increments of local times of Lévy processes ∗

Let X = {Xt, t ∈ R+} be a symmetric Lévy process with local time {Lt ; (x, t) ∈ R × R +}. When the Lévy exponent ψ(λ) is regularly varying at zero with index 1 < β ≤ 2, and satisfies some additional regularity conditions, lim t→∞ ∫∞ −∞(L x+1 t − Lt ) dx− E (∫∞ −∞(L x+1 t − Lt ) dx ) t √ ψ−1(1/t) L = (8cψ,1) 1/2 (∫ ∞ −∞ ( Lβ,1 )2 dx )1/2 η, where Lβ,1 = {Lβ,1 ; x ∈ R} denotes the local time, at ...

متن کامل

Limit Theorems for Renewal Processes

This article describes the Key renewal theorem and the Blackwell’s renewaltheorem. These two limit theorems for renewal processes are equivalent but of different forms.They are particularly useful for characterizing the asymptotic behavior of a probabilisticquantity of interest in a renewal process. We present two applications of these limit theorems:the limiting distributions o...

متن کامل

Cramer’s Theorem for Nonnegative Multivariate Point Processes with Independent Increments

We consider a continuous time version of Cramer’s theorem with nonnegative summands St = 1 t ∑ i:τi≤t ξi, t → ∞, where (τi, ξi)i≥1 is a sequence of random variables such that tSt is a random process with independent increments.

متن کامل

Central Limit Theorems For Superlinear Processes

The Central Limit Theorem is studied for stationary sequences that are sums of countable collections of linear processes. Two sets of sufficient conditions are obtained. One restricts only the coefficients and is shown to be best possible among such conditions. The other involves an interplay between the coefficients and the distribution functions of the innovations and is shown to be necessary...

متن کامل

Limit Theorems for Regenerative Excursion Processes

The regenerative excursion process Z(t), t = 0, 1, 2, . . . is constructed by two independent sequences X = {Xi, i ≥ 1} and Z = {Ti, (Zi(t), 0 ≤ t < Ti), i ≥ 1}. For the embedded alternating renewal process, with interarrival times Xi – the time for the installation and Ti – the time for the work, are proved some limit theorems for the spent worktime and the residual worktime, when at least one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1982

ISSN: 0047-259X

DOI: 10.1016/0047-259x(82)90013-6